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Rheological behavior of microemulsions

G. Gonnella and M. Ruggieri
Istituto Nazionale per la Fisica della Materia, Unita` di Bari and Dipartimento di Fisica, Universita` di Bari, and Istituto Nazionale
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~Received 26 April 2002; published 24 September 2002!

We study the stationary and transient behaviors of a microemulsion phase subjected to a shear flow. The
system is described by a diffusion-convective equation that generalizes the usual Cahn-Hilliard equation.
Nonlinear terms are treated in a self-consistent approximation. Shear, first and second normal stresses are
calculated as momenta of the structure factor. Shear thinning is observed in stationary conditions. After a
Newtonian regime at small values of the shear rate, the excess viscosity decreases when the shear rate becomes
of the order of the inverse of the relaxation time of the system without flow. In transient regimes, when the flow
is applied starting from a quiescent state, we find that the shear stress reaches a maximum before decreasing to
a constant value.
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I. INTRODUCTION

The rheological behavior of complex fluids such as po
mer solutions, polymer melts, emulsions is of considera
interest both in technology and in basic research@1#. While
the behavior of the stress response to applied flows is
fundamental importance in many applications, it also refle
the existence of mesoscopic structures in the fluid and
intimately related to its constitution. For example, when
shear flow is applied to a polymer solution, the stress fi
reaches a maximum and then relaxes to a constant value@2#.
This phenomenon, at small strain, is related to the entan
ment of the polymer network which is distorted by the flo
with a resulting increase of the stress. At larger values of
strain, however, the disentanglement of the system is favo
and the stress is observed to decrease. In general, non m
tonic relaxational properties of the stress are typical of co
plex fluids which are also characterized, in stationary con
tions, by non-Newtonian behavior. The effective viscos
depends on the applied shear flow, and different behav
can be observed@1#.

In this paper we consider the rheological behavior of
microemulsion phase in both stationary and transient co
tions. In ternary self-assembling systems, the surfac
forms interfaces between oil-like and waterlike domai
These interfaces, in the microemulsion phase, constitute
intertwined bicontinuous structure disordered on large sc
but with mesoscopic order on distances of the order of 50
@3#. The observed structure factor is given by

I ~q!;
1

a1gq21cq4
~1!

which, for g,0, has a maximum atq5Augu/2c @4–6#. In
real space, this corresponds to the two-point correlation fu
tion

G~r !5
d

2pr
e2r /j sinS 2pr

d D , ~2!
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where j plays the role of the usual correlation length
disordered phases,d is related to the size of coherent regio
of oil or water domains, and typical values of the ratiod/j
are in the interval 2–4.

The behavior of the stress in the microemulsion ph
was first considered in Ref.@7# and then in Ref.@8# where
also the two-time correlation functions were studied. He
we complete the analysis of the steady state of Ref.@8# and
consider also the transient behavior. Our approach is ba
on the use of a continuum free-energy functional and is si
lar to that of Onuki and Kawasaki@9#, applied also to evalu-
ate the effects of a shear flow on copolymer melts@10–12#,
on the disorder-lamellar transition@13,14#, and on the phase
separation of binary mixtures@15#.

We consider a Cahn-Hilliard equation generalized by
presence of a convective term. Hydrodynamical effects
neglected; moreover, the surfactant is assumed to re
faster than the other components of the mixture so that
degrees of freedom are not explicity considered. Nonlin
terms, which become relevant close to transition lines, w
be treated self-consistently. A renormalization procedure
introduced and the system is studied in terms of the phys
variablesj,d of the case without flow.

Our main result for the stationary regime is the behav
of the constitutive curve. Shear thinning, which is the d
crease of the effective viscosity when the shear rate is
creased, is observed in two different ranges of the shear
It first occurs at a value of the shear rate of the order of
inverse of the relaxation time of microemulsions witho
shear. The morphological changes occurring, when the s
rate is increased, can be deduced by the patterns exhibite
the structure factor. In the transient behavior after the ap
cation of the flow, at sufficiently high shear rates, we obse
a maximum in the shear stress followed by a relaxation t
constant value, analogous to what is observed in other
tems. We have also studied the behavior of the stress te
when, starting from a stationary state with shear, the flow
switched off.

The paper is arranged as follows. In Sec. II we specify
model and solve formally the dynamical equation for t
©2002 The American Physical Society06-1
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structure factor. Results for the stationary regime and for
transients are, respectively, described in Secs. III and IV. S
V contains some conclusions.

II. THE MODEL

Our study of rheological properties of microemulsions
based on a functional Landau-Ginzburg approach with
scalar order parameterf(xW ) representing the concentratio
difference between oil and water. We consider the Ham
tonian

H@f#5E d3xH 1

2
@a2f21~g01g2f2!~¹W f!21c~¹2f!2#

1
l

4
f4J ~3!

that has been largely demonstrated to well describe equ
rium properties of ternary mixtures@3#. Here we briefly dis-
cuss the properties of this Hamiltonian relevant for the m
croemulsion phase. The expression~3! differs in the gradient
terms from the usual Landau-Ginzburg Hamiltonian used
study binary mixtures. A negative value of the functio
g(f)5g01g2w2 (g2.0) favors the appearing of interface
In particular, the value ofg0 can be related to the amount o
surfactant present in the system. The term proportionalc
.0 assures stability at large momenta and weights the
vature of interfaces.

The presence of the quartic termsf4 and f2(¹W f)2,
which also in a disordered phase could have a role in
proximity of a transition line, makes impossible an exa
determination of the two point correlation functions. How
ever, following Ref.@7#, it is possible to use a renormaliza
tion procedure based on a self-consistent approximatio
find an expression for the equilibrium scattering function a
for the two-point correlation function in real space. For t
first, defined asf(kW ) the Fourier transform off(xW ), it is
found that

S~k![^f~kW !f~2kW !&5
T

ar1grk
21ck4

, ~4!

wherek[ukW u, the renormalized parameters are given by

ar5a21lS01g2S2 , ~5!

gr5g01g2S0 , ~6!

and the loop integrals are defined as

Sp5E
ukW u,L

d3kW

~2p!3
kpS~k! ~7!

(p50,2) with L being a high momentum phenomenologic
cutoff. The regiongr,0 and 4arc2gr

2.0, as discussed in
the Introduction, can be identified with the microemulsi
phase with the functionS(k) having a peak atk[kM
03150
e
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5Augr u/2c. Moreover, the characteristic lengthsj andd ap-
pearing in the real space two-point correlation function~2!
are given by

j5F1

2 S ar

c D 1/2

1
1

4 S gr

c D G1/2

, ~8!

d52pF1

2 S ar

c D 1/2

2
1

4 S gr

c D G1/2

. ~9!

Therefore, equilibrium properties can be expressed in te
of renormalized parameters and, by Eqs.~8! and~9!, through
the physical lenghtsj andd ~once the parametersl, c, g2,
and the cutoffL are given!.

The dynamics of the order parameter in the presence
convective motion@16# is described by the equation

]f

]t
1vW •¹W f5G¹2S dH

df D1hf , ~10!

whereH is the Hamiltonian of Eq.~3!. The velocity fieldvW is
a planar Couette shear flow

vW 5gyeW x , ~11!

whereg is the shear rate andeW x is the unit vector in the flow
direction;hf is a white Gaussian noise representing therm
fluctuations with momenta given by

^hf~xW ,t !&50, ~12!

^hf~xW ,t !hf~xW8,t8!&522TG¹2d3~xW2xW8!d~ t2t8!
~13!

(^•••& means the ensemble average! as required by the
fluctuation-dissipation theorem that holds in the absence
flow. The functional derivativedH/df represents the differ-
ence in chemical potentials between oil and water;G is a
mobility coefficient, andT is the temperature of the hea
bath. By assuming Eq.~10! as the evolution equation forf,
we are neglecting hydrodynamic fluctuations as well as
motion of the surfactant.

We will study the evolution equation for the dynamic
structure factor

S~kW ,t ![^f~kW ,t !f~2kW ,t !& ~14!

in the same self-consistent approximation used in equi
rium to write Eqs. ~5! and ~6!. The convection-diffusion
equation can be formally linearized as@17#

]f

]t
1vW •¹W f5G¹2$@a21lS0~ t !1g2S2~ t !#f2@g0

1g2S0~ t !#¹2f1cD2f%1hf , ~15!

where the quantitiesSp(t) are given by expressions analo
gous to those of Eq.~7! but now with S(kW ,t) of Eq. ~14!
6-2
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self-consistently calculated with Eq.~15!. A standard proce-
dure gives from Eq.~15! the dynamical equation forS(kW ,t),

H ]

]t
2gkx

]

]ky
12Gk2KR~k!J S~kW ,t !52TGk2, ~16!

where KR(k)[ar1grk
21ck4 is the renormalized vertex

function and the parametersar andgr can be obtained as in
Eqs.~5! and ~6! usingSp(t).

A formal solution of Eq.~16! may be obtained by the
method of characteristics,

S~kW ,t !5D0@KW ~ t !#I1~ t !12TGI2~ t !, ~17!

where we have defined the functions

I1~ t !5expH 22GE
0

t

dsK 2~s!@ar1gr K 2~s!1cK 4~s!#J ,

~18!

I2~ t !5E
0

t

duK 2~u!I1~u!, ~19!

andKW (u)[kW1gkxueW y ; D0(kW ) is the structure factor at th
initial time t50. Since the quantitiesar andgr contain the
momenta ofS(kW ,t), Eq. ~17! is actually a nonlinear integra
equation forS(kW ,t). This equation can be solved numerica
for all times by iterative methods.

Our results will first concern steady state properties. T
stationary solution can be readily obtained from thet
→1` limit of Eq. ~17!, observing that in this limit the firs
term of the solution tends to zero~except for thekW50
mode!. Therefore we write the stationary structure factor

S~kW ;g!`52TGI2~`!, ~20!

where

I2~`!5E
0

`

dz K 2~z!expH 22GE
0

z

ds K 2~s!@ar1grK 2~s!

1cK 4~s!#J .

We will also study transient behaviors with the flu
evolving from a quiescent state towards the stationary s
with shear, or with the system relaxing, after interruption
the flow, from the sheared stationary state into the quies
state. For the latter case we use the solution of Eq.~16! with
g50,

S~kW ;g;t !relax5S~kW ;g!`e22Gk2KR(k)

1
T

KR~k! S 12expF2
t

2Gk2KR~k!
G D .

~21!
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e
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Finally, once the structure factor is known, we may eva
ate the stresses that can be obtained as momenta of the
ture factor@7#. The shear, first, and second normal stres
are, respectively, given by

sxy~ t !52E
ukW u,L

d3kW

~2p!3
kxky~gr12ck2!S~kW ,t !, ~22!

N1~ t !52E
ukW u,L

d3kW

~2p!3
~kx

22ky
2!~gr12ck2!S~kW ,t !,

~23!

N2~ t !52E
ukW u,L

d3kW

~2p!3
~ky

22kz
2!~gr12ck2!S~kW ,t !.

~24!

In addition, the excess viscosity is defined as

Dh~ t !5
sxy

g
, ~25!

which represents the contribution of interfaces to the f
viscosity of the fluid~that is, evaluating the viscosity of th
fluid by means of Eq.~25! we are neglecting the hydrody
namical contribution to the viscosity itself!.

III. STATIONARY REGIME

In this section we present results for the steady sta
reached under the action of the shear flow with the struc
factor given by Eq.~20!. We have studied this expressio
numerically for several values ofj, d, and g. The other
parameters have been fixed asg251,c51,l50.5,L53.

The effects of the flow on the structure factor can be s
in Fig. 1 where the projections on the planesky50 andkz
50 are shown for differentg andj52,d56. Similar results
have been obtained for other choices ofj andd @8#. @At kx
50, the shape of the structure factor is the same as tha
the case without flow, see Eq.~16!.# At g50.5 the structure
factor remains almost isotropic and its pattern for each C
tesian plane is close to that of a circular volcano. The p
terns are progressively distorted when the shear rate is
creased. On the planekz50, at g52, the edge of the
volcano has assumed an elliptical shape and four peaks
visible. These peaks initially appear on the coordinate ax
then, wheng is increased, the ones located atkx.0 become
comparatively more important while the two others rota
clockwise and decrease their amplitude linearly withg until
they disappear. Indeed, in the limitg→`, since terms pro-
portional to powers ofgkx damp the exponential term on th
right-hand side of Eq.~20!, only the maxima ofC(kW ) with
kx50 andky56kM survive. On the other planeky50, two
peaks at kx50,kz56kM are also observed to becom
sharper and sharper asg is increased.

The above results can be related to the orientation of
interfaces in the mixture, as also observed in Ref.@8#. A peak
of C(k) defines a characteristic length proportional to t
inverse of its position and, since the system is not isotro
6-3
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FIG. 1. Projections of the structure factor in the stationary state on the planesky50 ~right column! andkz50 ~left column! for j52,
d56. The shear rate is, from the top to the bottom,g50.5, g52, andg5100; kx ,ky ,kz vary between23 and 3 in adimensional units
031506-4
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RHEOLOGICAL BEHAVIOR OF MICROEMULSIONS PHYSICAL REVIEW E66, 031506 ~2002!
to each maximum one associates three lengths, one for
space direction. Due to the symmetrykW→2kW , only the peaks
not related by reflection around the origin can be conside
At very large shear rate the existence of a single couple
maxima atkx50 signals that interfaces are preferentia
aligned along the flow with symmetry recovered in the tra
verse directions and the characteristic lengths being the s
as without shear. For intermediate values ofg the additional
peaks at (k̃x ,k̃y ,k̃z) reveal the presence of interfaces orient
with an anglea5arctan(2k̃x /k̃y) with respect to the flow,
besides those aligned along thex direction. These additiona
peaks are better seen in a region of parameters closer t
microemulsion-lamellar transition line corresponding to
larger value ofj @8#. As g is increased, the tilt anglea and
the relative abundance of lamellas oriented at this angle
minish as suggested by the behavior of the maxima withkx
Þ0 previously discussed.

FIG. 2. The stationary shear stresssxy versus the shear rateg
for j52 andd56.

FIG. 3. The first normal stressN1 for j52 andd56.
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The behavior of the stress tensor as a function of the sh
rate is reported in Figs. 2–4. At small values ofg the shear
stress is a linear function ofg so that the viscosity is constan
and the fluid is Newtonian. Shear thinning occurs forg be-
tween 1 and 2, when the slope of the curve of the str
changes significantly. At this point the original volcano sha
of the structure factor has also appreciably changed. In te

FIG. 4. Absolute value of the second normal stressN2 for
j52 andd56.

FIG. 5. Time evolution of the stresssxy for various values of the
shear rateg with j52 andd56. Results are shown forg50.5 ~top
left!, g52 ~top right!, g520 ~bottom left!, and g5100 ~bottom
right!.
6-5
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of interfaces we expect that, when shear thinning is
served, the bicontinuous network of interfaces, which is o
distorted in the Newtonian regime, is affected by many ru
tures with a significant dicrease of connectivity. We can s
that a strong shear regime is entered. Indeed, we can c
pare the shear temporal scaleg21 with the relaxation time
tM of microemulsions in equilibrium. The relaxation time
a mode with wave vectork is given by

t~kW !5
1

Gk2~ar1grk
21ck4!

. ~26!

Following Ref. @7#, we choosek5kM corresponding to the
peak of microemulsions, so that

tM5
1

8Gc

j2d2

4p2@~2p2/d!221/j2#
. ~27!

The corresponding Deborah number is given by

De5
tM

tS
, ~28!

wheretS51/g. If we takeg52 we get De;1.9 for the case
of Fig. 2. This indicates that shear thinning becomes evid
when the shear rate is of the order of the inverse of typ
structural times of the system without shear. We checked
other values ofj,d that the Deborah number at shear th
ning is always of order 1.

FIG. 6. Time evolution of the first normal stressN1; the param-
eters are the same as in Fig. 5.
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Shear thinning is observed again atg;103 when, as we
have seen, peaks withkx50 largely prevail. We expect tha
at these values of the shear rate the original bicontinu
interface network has changed significantly its topology,
coming more similar to a stack of lamellas. At very largeg,
the excess viscosity is found to decrease asg2s with s
51.87, which is close to the analytical limits52 @7#. In this
final stress regime the lamellae are expected to become m
and more aligned with the flow with fluctuations very inhi
ited. We observe that the shear stress corresponding
completely ordered lamellar phase is zero.

The other stress componentsN1 ,N2 behave similarly. At
small g, N1 ,N2;g2 while they decrease asg21 when g
→` ~see Figs. 3 and 4!.

IV. TRANSIENTS

We have studied the evolution of the system under
action of the shear flow from the initial equilibrium configu
ration of Eq. ~4! towards the steady state of the precedi
section, as described by Eq.~17!. The behavior of the stres
components for different values ofg is shown in Figs. 5–7.
Wheng is large enough that De>1, a nonmonotonic behav
ior of the stress is observed withsxy ,N1 ,uN2u exhibiting a
maximum before relaxing to a constant value. A similar b
havior has been measured in polymer solutions@2#. In our
case we can think that at initial times the surfactant interfa
are stretched by the flow with a consequent increase of
stress. When the maximum stress is reached, the inter

FIG. 7. Time evolution of the second normal stressN2 with
parameters as in Fig. 5.
6-6
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FIG. 8. Time evolution of the structure factor forj52, d56, andg5100. The projections on the planeskz50 ~left column! andky

50 ~right column! are shown, respectively, fort50 ~top!, t52.531022 ~middle!, when the maximum ofsxy is reached, andt52.0
31021 ~bottom!.
031506-7
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FIG. 9. Relaxation of the stresssxy for j52, d56, g52 ~top left!, g520 ~top right!, andg5100 ~bottom!.
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structure starts to break and the stress relaxes to a lo
value. The temporal evolution of the structure factor forg
5100 is shown in Fig. 8. The largest distortion observ
corresponds to the maximum stress. In the caseg52, when
the relaxation of the stress is monotonic, a prolate pat
like that in the middle of Fig. 8 atkz50 is not observed.

We have also considered the opposite situation with
system, initially in a stationary state with shear, evolvi
without flow as described by Eq.~21!. In this case the be
havior is exponentially monotonic after an initial faster d
cay, as can be seen in Fig. 9. The time constantt of the
exponential part of the relaxation decreases withg, as shown
in Fig. 10.

V. CONCLUSIONS

We have used a generalized Cahn-Hilliard equation wit
convective term to study the rheological behavior of t
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FIG. 10. Relaxation timet as a function of the shear rateg.
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microemulsion phase. The steady state constitutive cu
shows shear thinning, first occurring at a shear rate of
order of the inverse of the equilibrium relaxation time. W
have also obtained analytical expressions for the temp
behavior of the structure factor. From this we derive a n
monotonic evolution of the stress. This is similar to what
observed in other systems that relax into the steady state
a shear flow. We believe that these predictions are usefu
future experiments. From the theoretical point of view, t
analysis can be completed by studying how the equilibri
-

.

g

cl.
.

.
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phase diagram, including the disorder and the Lifshitz lin
@3–6#, is changed by the presence of the flow. Moreov
hydrodynamic fluctuations should be taken into account fo
full description of the system.
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